# HWK4 >(Computer numerical methods) 1a, 1c >1. Find the three-digit decimal floating-point representation of each of the following numbers: (a) 2312 (b) 0.01277 > & Gaussian Elimination with Partial Pivoting (Topic from Section 7.3) Let $\mathrm{A}=[0.1,2.7 ; 1.0,0.5]$ and $\mathrm{b}=[10 ;-6]$ Solve $A x=b$ in 2-digit precision using the following two methods (see what we did in lab 4): i) Gaussian elimination without pivoting ii) Gaussian elimination with partial pivoting Compare the results with the exact solution $\mathrm{x}=[-8 ; 4]$ Show your work ![[ Notebook - Linear Algebra Homework 03-02-2025-15.excalidraw.svg ]] %%[[Notebook - Linear Algebra Homework 03-02-2025-15.excalidraw.md|🖋 Edit in Excalidraw]]%% --- >1a, 1b >1. Determine whether the following sets form subspaces of $\mathbb{R}^2$ : (a) $\left\{\left(x_1, x_2\right)^T \mid x_1+x_2=0\right\}$ (b) $\left\{\left(x_1, x_2\right)^T \mid x_1 x_2=0\right\}$ ![[ Notebook - Linear Algebra Homework 03-01-2025-15.excalidraw.svg ]] %%[[Notebook - Linear Algebra Homework 03-01-2025-15.excalidraw]]%% --- ![[ Notebook - Linear Algebra Homework 03-01-2025-15_0.excalidraw.svg ]] %%[[Notebook - Linear Algebra Homework 03-01-2025-15_0.excalidraw.md|🖋 Edit in Excalidraw]]%% --- ![[ Notebook - Linear Algebra Homework 02-28-2025-21.excalidraw.svg ]] --- ![[ 1Notebook - Linear Algebra Homework 03-01-2025-18_1.excalidraw.svg ]] %%[[1Notebook - Linear Algebra Homework 03-01-2025-18_1.excalidraw|🖋 Edit in Excalidraw]]%% --- >[!note] 4b >1. Determine the null space of each of the following matrices: (b) $\left[\begin{array}{rrrr}1 & 2 & -3 & -1 \\ -2 & -4 & 6 & 3\end{array}\right]$ ![[ Notebook - Linear Algebra Homework 03-01-2025-21.excalidraw.svg ]] %%[[Notebook - Linear Algebra Homework 03-01-2025-21.excalidraw.md|🖋 Edit in Excalidraw]]%% --- ![[ Notebook - Linear Algebra Homework 03-02-2025-17.excalidraw.svg ]] %%[[Notebook - Linear Algebra Homework 03-02-2025-17.excalidraw.md|🖋 Edit in Excalidraw]]%% --- ![[ Notebook - Linear Algebra Homework 03-02-2025-18.excalidraw.svg ]] %%[[Notebook - Linear Algebra Homework 03-02-2025-18.excalidraw.md|🖋 Edit in Excalidraw]]%% --- >1. Determine whether the following are subspaces of $C[-1,1]$ :1 (a) The set of functions $f$ in $C[-1,1]$ such that $f(-1)=$ $f(1)$ ![[ Notebook - Linear Algebra Homework 03-02-2025-19.excalidraw.svg ]] %%[[Notebook - Linear Algebra Homework 03-02-2025-19.excalidraw.md|🖋 Edit in Excalidraw]]%% ![[ Notebook - Linear Algebra Homework 03-02-2025-20.excalidraw.svg ]] %%[[Notebook - Linear Algebra Homework 03-02-2025-20.excalidraw.md|🖋 Edit in Excalidraw]]%% --- >1. Determine whether the following are spanning sets for $\mathbb{R}^2$ : (a) $\left\{\binom{2}{1},\binom{3}{2}\right\}$ (b) $\left\{\binom{2}{3},\binom{4}{6}\right\}$ ![[ Notebook - Linear Algebra Homework 03-02-2025-21.excalidraw.svg ]] %%[[Notebook - Linear Algebra Homework 03-02-2025-21.excalidraw.md|🖋 Edit in Excalidraw]]%% >1. Given > $ \begin{aligned} & \mathbf{x}_1=\left(\begin{array}{r} -1 \\ 2 \\ 3 \end{array}\right), \quad \mathbf{x}_2=\left(\begin{array}{l} 3 \\ 4 \\ 2 \end{array}\right) \\ & \mathbf{x}=\left(\begin{array}{l} 2 \\ 6 \\ 6 \end{array}\right), \quad \mathbf{y}=\left(\begin{array}{r} -9 \\ -2 \\ 5 \end{array}\right) \end{aligned} $ (a) Is $\mathbf{x} \in \operatorname{Span}\left(\mathbf{x}_1, \mathbf{x}_2\right)$ ? ![[ Notebook - Linear Algebra Homework 03-03-2025-23.excalidraw.svg ]] %%[[Notebook - Linear Algebra Homework 03-03-2025-23.excalidraw.md|🖋 Edit in Excalidraw]]%% [[%Todo: fix javascript to snip solely hw from notes w/o including notes(priority 2)]]