==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠== You can decompress Drawing data with the command palette: 'Decompress current Excalidraw file'. For more info check in plugin settings under 'Saving' # Excalidraw Data ## Text Elements Understanding = (First Principles × Pattern Recognition) ÷ Abstraction Layers ^7bW83B1C I feel like my personality type’s weakness is getting lost in the weeds analogous to thinking I need to learn every electron flow to get to a solution, so to me, what does minimizing abstraction mean? ^BtHCV6gX "Minimizing unnecessary abstraction" doesn't mean eliminating abstraction or diving into every low-level detail. Instead, it means being strategic about which layers of abstraction you interact with for a given task. ^CVu6Ja6p Choose the right level of abstraction for the problem at hand. ^dBZ9jRn2 Choose the right level of abstraction for the problem at hand. ^WqxX5rR5 Start with the highest level of abstraction that solves your problem completely. Only go deeper when you have evidence that you need to. ^73OdZWIm I've the tendency to dive "prematurely deep" into abstractions & inclination to preemptively drill down through abstraction layers before it's necessary. ^KhOzsrOF The "Just-In-Time Depth" approach: ^eKFW8pmU Start with a clear goal - Define exactly what you're trying to accomplish before exploring any implementation details. ^MO7wN4Ok Time-box your exploration - When learning a new technology, give yourself a strict time limit for initial learning before building something practical. ^Nkzyoxfb Use the "Rule of Three" - Only dive one layer deeper when you encounter the same limitation or confusion three times. Once is coincidence, twice is interesting, three times signals a pattern worth investigating. ^xGtYXcsW Practice "deliberate ignorance" - Consciously decide which parts of a system you will temporarily treat as black boxes. Write these down explicitly as, "I'm choosing not to understand X right now because it's not blocking my current goal." ^WxYlEzq5 Build confidence through successful implementations - Complete projects at your current abstraction level before diving deeper. Success breeds confidence in working with partial understanding. ^opG0GsUS Remember, even the most senior developers don't fully understand every layer of every system they work with. The skill is knowing when deeper understanding is required and when it's actually counterproductive. ^vRAR4gaR ## Embedded Files ab366bf90f5a707e8b13ec3dc32db7f46eec0cd6: [[svgviewer-png-output(14).png]] %% ## Drawing ```compressed-json N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQAObQBmGjoghH0EDihmbgBtcDBQMBKIEm4IZlwAGRIAdgBHACtqgGVJAHVMJqFqgC1CJOVW1JLIWEQKwOwojmVg0dLMbmck ngA2ZIAGePX1gFYAFnitraT9vkLIGBWARgBOTaT1x+Oktbqkrfv+UooSdTceLnX6QSQIQjKaTcQ6XMYQazzcSoLagypQUhsADWCAAwmx8GxSBUAMT3Q4AMwpuHii0gmlw2CxykxQg4xHxhOJEgx1mYcFwgWydIgFMI+HwrVgCwkkkZGkCIuYGOxCA6AMk3C22n2aOVmJxUpgMvQgg8ItZUI44VyaFRVwgbAF2DUNzQt1OaJZwjgAEliLbUHkALpo inkTL+7gcIQStGEdlYCp9IwW4Ts63MQPFeETZFJK4AXz1CAQxG4t1uax48Xi9weaMYLHYXDQPFujaYrE4ADlOGJuDwtjwa7dDvHmAARdJQMvcan4MJozTp4gAUWCmWygYKYyKV1K5QkdU0HWBACFbri6aU8xVZ5goBAD4WrqGHUI4MRcLPy+66ocDx1HU8S3ABdQ/A6RAcFi0axvgaKEkyc5oAuYSFMWhQ5pAR7oCeZ5JJe15onePJYE+aLLGgqz ttoVZJLsWwQTw+znHCpRuqgzgPLcyTrEkY4nLW+z3MO6xov8xCAmg8Q8Ic2gHGconrCxaLgpC0JoAJ2j3Ls9z6fslZ1Lc8R1PsdRooiJr2vC+qqpyRKkuSVI0iKDJMt6bIcgSjk8uQHD8oKWQUQ6YoSkaJpSPKIhIHqKo4uqUmanaOpxQaCARcilQEuUaKWpImaBjZpROoyroVp6DqeX6Ab5O+8LhrgkZ/qgMZxg6CbEEmEi4FsaZeYVcHtbZpYt R8BwgRBnbNpwFafNN3YcH2HADv+wFgd8HoTtOwS/vOBBLg6K5eRuGTBTu9WlJ+357f+gH3MBoHgZB8LQbBaBtQhUFsMhLVoQgJHkRUACqiYsLMjhzKgAC8qAABQAGKEODqAAAqkAmLo+OEqAAOtoz+s6kBwqAAEoIHoygcGoLYAJSoAA76gACC9i8jMLaoNUuAwF2FqUAAKkDEig114PWJDygw/DSMo+jmOENjzB4wTMhMCT5OU9TUB04zLNs+QH OcFzPN82GnBQK0hBGMiPBJAp5JMUkxl2/EsL8eb2QI014qceJDoPlAzNEFTFRiNkTAik2OvuMHkKtug+gkMQCxono2S4AmTBRhIVS1MQjQtO0XQ9P0gzDCKRKQgmBBC4+INg8qEsJlLsOI8jypoxjK2K8Eyv46jhPq2TFNsFTNOcPTTOs/qjI68b3O8ywIq4EIUBsOTrA29wGJCADUFZwAEhCUJPu6yT7BhvzYWULUQOeUCH7iABq6zKAAGiKpHo IHIpUVxXw6jaBHGxMczsth7EOOOB0nFuJyW0IBdYxx7iGXeOSR4EkNTcDMvsBB+kNhmRArcVSDp1KnyBB2B0VlkTFQEPFPEPluToBJAgM4VZbhuUZMyVk7IHJMOgP5QKQoQoNXFJKaUWU5TYAVLFB0dkEpYJSrqOR9DMoVDNLlB0+VBp2jRKVF0sAKq0IgNVf0F0wwRgQDnVq8F4yJn/giDheVVw6JscNUoYQUKoAeA9HYFwmILRbBQwJvZ+y2zq FsQ4zt6zxG2jOLx/1lyrlOluHIdU0TXR/F4sC91Ho5KmgfGCQ0vqvR+jiP6B1965mFugX0qAKSlnwKgIgOJUD6BgKgRALBOAEFdKgPMgBMAmVhQEIWJCqoEIMrZQCAZAt2aWwTuCZ+nglQCMssytrAEDHsIZW68AA62RJAJixHMup1oyz9LYM0kIxNUAICbB09IMxMQkwpISCglzUDTKgJ83AqAzRrxbNQf5Vz15tIBqsuUPziBsHCAcpO1Mk6WC hrgA2c9OaZGsAAfn5hQOuZ9an1Mac0wgrT2mdK7D0ogsB+nwAQEM1ZozxmTK+TMnWUNCSLJJuoBAjL1moE2YSZQOzPnqGOac1qo1PnBEFCTe5TBHnBGecbN5bAPlgu+b8kFvh54cGBYIT5mRgUUChagGFOMEWECRXM1Fs8jYk0xRwHFntLbW1tsYikFtvZJ3wH7QGj446hwkMECkIjSjR3MAQQNCdoBOhFOnKIWdSDWM+nojG/ha41IgHUhpQQSV ko6V0wQHBek0sGcMplNoJlTLZXMzlPylk8r5QGAVJahUirBWKmCErznEGlTcuVDy7lKpVK895nzNVgr+QC3V+rQVXKNZCn8ZrYXK0tdalFaL7XguxSvNeG9whuv2ouKppRoIIGPhpAlvFzhXywh1O+L8hDrAAFK4HWHAL+dL7xA0oisQBwC7YXHYVsSs7w0SwKHDqIcAkPT7H4vxYymCkrYPWNqUy9x2xjhYkQ9iYIT6aVQKBSycxrJpXsowpylJ qS0mXFwzyvDKN+T5AKYRIowriONJI6KipyMKJQ0ovjGUJHqJyuWZxfgCo2i1Ho505V3SVXhKY2qaAQwWKalYlqqaOr2IqLgHg/UMzSY+rYuRo0KwCQuLJfYwIQkJxQXZ5aq1UAQUwyZHgES4m7QSZUpJJ1NznXSR+L8WSWo5KAkQ56iFjnFMQmUnzJ7/UEogHsiAABZBMVrrZzLZNaMQWZBQdNtezXVqWV3hA4AAch+Y64dWWS3sqlsVw2urUBEj NYQMwcwDkJjBfK0gHT3nOGCIwJpXVE34G0KgX0AVZy4GIMCtQO6AqoE0BCKGs9ZyqGwAK46PyTXmEkM002LA2sUgOc19FxsYDCAmRHFrqy1BHc9aQAVXzOtZH6aELE2hcX4oqKljLiLstQ1yxTG0hXdt2tKxAcrzAqs1ZCHKogCKfw2q3a19rjgutS161c/rg21XDflWNmZmdJvTdmyEBbEzEd8lW+tqWm2EDbd28IfbRzpHHaXsrNgFIoclc5jd oQd2iZz0e+oep7W/mqEYNy77v2XVW23m2D1Xqfa+u4P7apAaQ4xpDWGyAEbY56/vHGtOFtM7WmTVp0z8Iq4ZvwP9iQgPMsbqlmD/LVQBsC5ay2Mr5r4fVeW3V1HjXfdXZJljzrcy8d3KHUNkbebxvk6mzN5U1PFt05W2tuZzPWeovZ5Cw73OuxnYj9u4XoumDi/+JLl7b3ZefaiMwH7e716byPahXzhSL0EevRfO9JQb64QgMQc8fR7hNFJhwAzJ Fv1kXrn+6iI4b3xBswBFBGx6xQIg1rp4rstjwcOOsOo6xiEvT+Io1A+wLjAKSCg0DKCBIkPhGQwjHmSNIhkyo9KfCqMuS0ZHT0Y8LeRcj3iCKsbBTsZiJqKyg8ayK2T0KJTSQoipS/6qhwGmhib9RWjGYoiyZlSGIKbGLKbmKhSWIpp26Hi6Y9QpASZGZZixZmbZLHAHB1gn5JB2bcAPSOZhIVTn7P7uZeYzIJaHTwjHTsgpKBaqaXSQCZK3TeIA QRZPSHAFKvQxYmbuKQBITlLHriG3hZq4iSBsALK8pNrprSDXKjbl6XbboN5NpwCYiaCbgCo/JyjsiK5aKCxGEmFmHLK8qWE/JJ5NJ84V6tYOErJOF2CuHLoeHEBeENQWzK7uoureq+xa5JbRoVAG5RxMAxxRqm48jm4OgJpW7Zy27aGOjpo1xO6+GmFhABGoBBHWF5phF2ERHtaOHOGxHuESyJGlCrwd6Hoq79KkB7zRbWiXrkLny3olCYTD4PoV AdANCYDvz7CkCkz7BfqTCL6G4QD/zOAjjai34n66QPDHAgTkh75oCn46S7C3AiS3AqQMQqSX6QCSSoG35xB2yP4PCsTELKJv796DgWRUKkY0JCb/4SBkjUauR0YeSgHQk/yQFBTChhiwEibwHSIxRKjIHX4nFCZYHZTmgSZ4FMG6IOj6LybeKKalBkFBYNSUGVElI0FdQOK4CHCGbECuLaYjReJDiViATuxcEOhNiLQWaULwjikthObIi7B1iPH3 BJDQLwiTI7SiEVKJZHTJIBbbiMlXQhaKHhYPSRZqHvEQBvTMGlK/T6GnrjD1H+EWFXqtGhH84dGcyRG8rREuEZBuGoDxEDGQDkB4qOmNHOmnyum2EY6eldFRE9F+lxH9HsbJFd68Bq5ewa5+oBzkTZHBoIChp5GkAFH4B5k/wlHwhlFJpUFVEO61HO7oDGENHmErItEhHRnQ6xmvbdExGJl9GeHt4HpbzIi7z2mWlHwgmzGXzzHXxLHHhJAADyxA fQHQvo+gOxWUv8y+ACTEgGoC5IPAmGNmNxtJcQhwmGbx5w0SLEqpV+AmLmhwuC5w5IzwZwhk8GeGUgk5N+t5kA1CP+SBf+TGzCzkNGnCiJq4yJAiLGaJ+xHGxJUiMieJ6UKByUaBQJHiqiWJ2BpJWiwg5JRUhBBinEHopBrINU5BTJGmNZrJOEtB6AuA2xDBPJ+BfJHi5mWk7woGp+9Y3BaAdQn5MpoSK0yIYGt+VxW0HUU48SWpBh9IupZ0+psh GSRp2Syhppqh6hZ6mhbitFlp8WslY5v8EgUogo+2T2TRRyUI4QwRJOHZguxs6gy6ZojAyswur2Pprheg+g2Ms4vq2gByC5HAvqXyVyXUCAXSkKn2VecojA8eJAWQYgyyy6VevalyQZEAIZDZEAplxZEuR2TaVl4Inc7Z7RMZjlpqLlOM7lnSCZ+gqA3lvlQQMAU2QVIVwqZqpYkVJq0Vt2sVvK9yCVIlyVPyqVUq68GVnq2QKRg4GZUA6RmutxWR RR6AuR00JZZZsan6FuGc1ZLJaa1cba2VuV5lkuhVGkNlUZZVnZFVzlBIrlqANVnlfpjV3m/lqAbVHSHV4V3V4IJMMVuAcVg1XUw1Tlo1t2aVE1g5neoxiSve0xhGN605YACx+4apd8AA0pIAuSYKQAuQjBuT+kvg6IcQBiAhcKvsCM8RhdcLNU8LWEJFWPsJEixDTRAJ8WhcBPbJ8PWOcABO2KZGze/gSkcF/mRhgTiFBSwmwgJOBdwpBcBdBQFF AeiaFJiVxhUIhbiUJqhVqOgYBZgdhSSZovCNovgcYtScQbSWRT6GYgaZAI1M1NaWyd1AxesNybydQQIBxS5qfmBkxBaUJQnB6GCdKV2LKfwfxTWOeS8KJCIYoXDRIQpakpRYaTdGpbkmaVpToTpWxToQZXaUlhUL6JVnFU2rOImCtB0mCtjryqlk4RkD+DFCFT9WVnHh6ZwMrAAGQ9YrTQRo6OVXIN0ZBwA6yjYdJkBiIroUDcqSD5ThGcz4AnbK xrYva8pqCVbKx5YQ4DYZVZVZol1l0rIV0g3YDV1hUfaoD12BD6BN2BAt1dVt3ZBXId0rY93Ux901ytZgrD0+Vj3NVmoYwSjT2z3z2v2l6nar1Ejr1QCb2Spe6FaTWpmjFDhpFZmZE5m67xw5EFn7HG6FHYPFHbWlGW57XO2QB1lHUH2l0tnmFZCn3n0dZxXX2N1QDN0T2P2w7t3lVv293YD93f1D2BAj3/0t1ANjZqqgP4VHbgNL084M5r205wPb 0Fa73Q0jEjnjFjnnoI0D5zEo2zno0VAIAY0IxnhwD6DAyE17F/wrDAjJCb6gTn7HCnBuwnmHmJBuxcWIYxICTa53moFrDyTRKx0RIRIv5C3fmf7gnf6UkG2S2K0ki4BJBUiaBckIny1eRQW8jK2wUwHhRG1a28YS1qgEn62YXpTEkaLiZ4WSauIW1yZW2kVejkV23KUUHUX7U6bsl6Z1Ae34HYTjAL68BFgljZK7AiSGQTN8XeLr58EiUViiSVis 0qnx1iFjmSHrh6lpLtPwgKEZ0qH5IWlWlaF6W6HrNF0SACwrKpYvpCDKjOAzbOACxWq8rTij2SBla4BwDRHyjIB/ZZrXN10QB3MPNPMvOZCoDvPqBfM/OYh/MpnTVpmoOhTq4+rZk65BwrWWm4NFkbXYvrzEOVmkPW40UHWO7ZVAtX0gv3NQCPMuAQtvMRUwuw7fO/PSL/OWT7ow2aMTHw3flI1D5o2Hh3y3CkACzEBYg5A9jAyTiaD3C4B9DMzo xbDPwACK7t8+ux6A0wsw3+25qwxCe5wGmGaCj5J5aCyQ55AENmDEzxZk/jHx1+Aln5wtWuv5CIEJAFFTFG4BMJyTqT6TwBEFWTitOTQi0BGJBTGt2JSFOtZTbN8iwmMbOFJtpQZtFJBBVJjTJFdJkADJuzpQjtmm5DZQ9FCIdQz8/Tmbgz0AwzBYYwqN3tXiJ+ewxCtYod4a4ds0bYgl3bS0kdqALwAlVmXwazhlfmUh2zO4B4gzOEd8aWC5dQFA PYhwC5sEoIt4wz0AQML4b4Kl6dYW6leSUWhS70ulcWtp3eJ6QrI+C7S7K7a7G7Ac27W5JN/6u55N7YprD+5rMC3AKpwT1rj5wITjDryGqBxkvE90sGFwKpzskTV63AotMT4t8TDCfrzCAbFIaTctDGYBvkKJMFbGUbnGkURTiBPr/GqBhJJTVTOBZJUmmbDTRBubNtn4bTQYchoozJpbnUrtCIQBptLirFXtlQPtzxZwAk3w+kMzGwUpXbM0A7Cz aAD0p+Fwp+xi6pMlhdOp/milOzXHB7oWc0mdmlxzudYn5zE7mDyWJ1+Vb2/DNyoVBAXEULBZWcdymAc8IVJqKVwglWgQYxMAcyU62Ar1kyR2UDgQByWAPgVcKKHAHSVq2MqSA9JMKe4ozAe9Ph9cJlUQeVdeMjDVMqr2wqrnzg7nYo1oXnPnHSfn4NQggX5hA2oXL94XBgPgkXCj0DXn8X3cTWSXEyPl2z6XnVE22XiLrqKDc1C1GLhhWDQaq1uL 61kapZ2LScxAKclHkAVZpLor4rkr0rsr8riryrpAqrGrlcNRVDeX6A9nRXjnpXLnTSlX041XA13nMwvnpqwuzXwXbXAqHXI33X0Xn3/XNqQ3KXo3rWmXi4GVQxQ5aZo5kxfeSHU5t7c56A9A+AfQzgL8XwAA+kIBSLcAuXAH0M/JOD2BjQAOJz4vvauZUUx6upzvvUQv7Gvft2y/ts2cRQLagqkPQgd2vqeOvs3X4nCdv4bo9Dsev/lxNUcYeEcQ BJMpM4dBsSEgEK2YdK0Ruq2iLRvkcIHIWqi62CZ0dG3VO4FMeEXZusdGItO20qZGcdNO2nN2I9M9TxBVvMWuK1vfwNszksFhanGafn7S8MD9uDh9tKdynIdySRKP6fnafeY2dJ36cp35CzsHjzsVA9hYhGA3aYA4c3hDNM+/x7tjDcf7NHtmdHOTHnt536VXv1KVKY9GMSAF9F9sAl+aDWM/y/rs87lAJfsPA8/kh88wiPlWvC+2tgfwYQec2PDa DASmu2u6RRKxKkLfkofwgK9ZvodS3Ye4cZP4fZOokkdq1G/cY4nFPofm/oVElW8Me1MEXesUM5uO9VStMu9qZu8lsPe3TATrgHuDVtAwzfTxC1A2BDhYQj5SPkHUHBoZ5mzmR6KJGdiSU1S0lNPrpwz5TsDOqdeQqpTr6HNT2GhIpEAJtJ6Fr2clHdndwgCMtnAK4TAI9WECvY4uXIMbpVw6B/VrksqG1JKnVQUwCoPkZQDAGBRN5WBIgMIPgHdL /IMQ5gH5DrEyAHIUcS2BvJlh1iudSuH9KWGD1WxCBxQksEFJkC7RSwnC6KdwDl1DL0DGBzAqQewMwD9cuBqAHgZ9h0ECDrQQg6RBwFEHiD3scVdyjILkH6hFB/SV5iSiTg/INB2sKwE0g8FQx9BmgQwfgGMGCBTBRyKGBYI5hWCpuM1VXGg3RYYNMWm1NamKXyJrdNqm3bbvGhJYVEKgOPPHgTy2DE9Se5PSntTzp4M97cN3TNLYNeZMDe+Dgvrp wNazcDeBCQprIIP6TCDfBQqfwZIKCFBAQhCgmYOEMhZqDoh7WTQXEL4HEw5kSQlIWkIMAzJMh5gv3LkK5bDFhyO8LRqj10YVhB8wfRYp32wJoZ9gVPXEEYEXa+gX0WIYGALC2CoxJw2AQ+AP2Z4zB/yBrTnmPx/aT8TyFwIBG7Dn6gd7W4vDmtgl4I79ZevFVDpCRKbH91ep/YNpk0Yy69w2KtOCurWN538du6IFCgm2f4ptjaNTYTnU3NpEUaSz TH/s70IE8dOmfHctqAN961NGC2YA8HW21ZB8DGIfCsNTUREiQ5OsfRaPH3dCsRjgYlbflgI1IJ0e8eArZgQOz57g52t8CoJgFp5QAAAmu/GwDMAOgZfSUZuV3Z7hXw1fYzsaWPZZ0LOFAi9t9Fb7/QO+IrM0RaOtG2j7RWrJ0cTXhCk1P2QGbnmayn5oBWIcQZETa1RGn50RzrXYHRH0gqkdgMGQEmpG/LEY8RH/ekb6xV5q9A2eHJEmG0v6Rtr+ ZHW/nGxKaP9aO6HejrhTZHv9Fen/B3iQSd4cc/+3HYtmS2AEclmY4A0tlAIA4CUcExCBAdHzbDn4UB7qCCOvkuJajDw2AzUrgNKCbNpCSlV3ns2IGmdSB5pRvqW2s57iHS9A4GOGRuYQBSYsYXlGEWubCMyslXT6kw1fE1c5GTATqhFQAk9V/qt2RKumCJhNEqgKg4KlliiCY5Xs6cCkPc05jqBhG6w8IK1WGoso9ACsU+hCigD/AkqLKXrEwBso txgUaE0sBhOYAHJWAVMA6G9gFBqxbkFAIkJLgTCuUdYygNHHMGsHZV7xtDals+OCDl53xpYT8R9WCoT1L6nAXlP+New/VgJvAqvOBLZCQSm00E+SXBLG7tYkJKEiquhOUGYSpJxE5WLhJ7j4TKJRE9esrFImBBlQFE5ZEZNebKx6JbaDZJ0iHisT2JR2TieRJ4mNYkGSLGboUIyJLVbOpQlbuUOLKVCNuycNnsS12r7dRM7wz4d8IXK/D/hgI4Ea COu6HU+hyWQSU0VSwiTXx/OcSQgEknfja6bWP8SdkAm/VeqIuNSfdigkaZIhagXSYhM4DITFozk6icZOy6mTbJDVNgHhMSoESbJ1aavA5MayUS56g01yf8njiMS/kzEomCTDYnFk/JHALiZCF4nKAEe3LDRrcL5bkC0eMxbxE8JlEvCgxEgHgKQCxBk9JAzABGNUB4ALl1gBgIwNgHuBCBCeAsBoOCN1ZQjh+hrH4nGPH4JiTyBwXBKmJF5gdMx9 5YCOLzdaqcFOf5L1r2PLEJNdeVYjXjWJ14q8KReTUjghRN7xt7y7YpXp2LTbBlpG9TTkU0zzYmJf+fI0cV0zVJCjmYIotkWKO4AB962ozWUe6FzEQIxwWIsOkpxj6rjFmpwCJJWC047jdR2pfUYeMM67gxgJo0fF0EtH4A1wRgBoExVz6OiiaT4KviUBr6ni7o547OuOR9HN9rxNAhAIGLz4SA9ZBso2SbNzCvsh+0Yj9qPyhlwi/28IP2GhgSDA d5+aIpfqhlwS34LyqCP2rWCLGy8Sx+/bGYfyV6EjqxZ/WseSPrEG8i21I5sdrVbGMjLezI63oxyZn29iK3/JTOzPtr8j3evo7mV7wYrngpxlA9itkiQRqEgm80GKRKWXGYyo+cfQdiZDQx2xHiskcdjeIgAHjp2zc2vmeI0oN8z2V4gui7MuboB0Ylg4Fl1CIBrZyAs4CZFTCJDWAxAkk/EAFBdA7IH6LoLqMXi5ysYcgthf5DAAzz1Uq8/wCUAc lnA+VL5QDauoEGXShBVsS9JkKtl74mSOgGMM+TykaIwoZ6Iw8wGoBCqhBgUqWEuvVWkQNE5kvgpQWwAOReQuwEMVAO/GaIulfBHyNbHgHuYwNlGbAH5C4TKRzJyU2AEQMIhe4BUIAALegfvJyGHygghAE+VknPm+D/I182HJV1vnMB759zR+QlRflHY35vOEIV/MAVSDHswDQBXAGAW+wxiIQH5BApcJcIYFmAOBQgtobILJGaCgxJguYDYLs0lW PBX4VYBQwiFnyMheLHZCULqFkZWhQzgYWNEN6W9FhZAvYVQxOF3C4KLwtSx5DkWs3dBhFJKHYsyh0s/FoQ0TgJS6Re3eoQ9KekvS3pH0r6T9L+kAygZ+UillmiEUxwRFx8mvGfPjiXyRKN8zuoouYDKLn5B2V+WZQ0VvZmAWiv0r/Knr6LDFIVDECYoFQr0oFWISxdYrUC2LeUKCuVE4KICOKiszi6lrgoaoeLCFkSsFL4qbj+KqFLRYJfQtXhhL YGES1hboQ4UdIuFpAHheV0myJKrhSPUYij35ay9BWzw4Vu7L3n7BJAh8LEEkH0AvoOA1QTAOeGUB1BMAlo+4B0AFj6ARgEYqYCzzBkByOeRrWERP1DkcRsE9jBGdHIzGxz+KSGbEVdNxEZzYmWcuhEBXxkn9Ne+47XqGwLnEcGxhvJsZrUpnlzqZ5TRlYbSrmv9uxtvMsZbTY6DiKKzczmYKI7kIhzwfM9NiJxrYSjA+Is/knXwggjtT8SouWapx eC7Bk588neXp3wFZ9VMOfPcECsdBwBaeWwWnswGBjorTZ38OgRbJdH7tgsh7NeSewvGbye5+df0e3wBV3sKgToR1c6tdXgi32OKkflz2hm88TyIETxlHPTFn4KVvtE4iJA2BJzjIKc6lYRnTmDFM5xiJNjnMJl5ziZ/CUmVfx5UUzaRpvajmhRpnCrDQL/LsaqvZHMdmZ0qnkUOI5m8dg1ZbRVbgGIiiiWKmbSAT7UAhOwz8dsOTiuOHkR0VOszX SC+VODi9U+u481erOXmFsiBfq22evLIHaVHZVnbeW3zVkLdks54I4WNI4Bih8Jzk6Rv8iEDhcbQyEppNDwM7pdlYcizrt5lqpsAmgLPDZI11IAHJnlPC2RnZX0HY45kSk0gFNlaCfqvcq2YRi2iQlDViJW0okCcm6wcBHub83YScohgtx+JWaB9UYKfUvrJpb6yTB+q/VZgf1w3VLsFAA1ud8QI3UQqBvA0zBINww2DfEvg02FENMeKGChrQ0Yaq 0mgbDeZN6l4b16BGp6XMlI1mVyNjcSjXxKSWhTUWmZIoWkrvVRTCyq3E3DkogDVDEppQApTbgqCowQVYKiFVCphVwqEVSKlFWipqX1kaNj63Da+rQnvrmAcmtjbGA40w8WwgG1ALxqaoCaIN/pGqqJuyAL1jY7ZSTTjkalMBZNrGleopvo0qa7sqyQjRpospkbXOFG5uHps+U8szp2jCcn8pumo0I1EgOYEuUIBrhD4mcQ+D2FVYUB4gcgXEK0De QgysVXraEXiuDkErExqAesLxFJWZrkZqBE4B63Rlzax5B/CtfQirXEiteIbMkSTMLlUib+fK5tVTJo5CrcZybSKNXLf4SqcZUqhufSSblHqW5gAtuS7Q5KThu5qAIWVKK1W9zoBOwQDn4kXEyze2hq7xCqSrDsE9+24nURcwtUGirVQYG1XuFNESB6ApMZmKTEOA8TSYDoj1ZX29VujfVJnU9QGvtknNPtIa6gTevQjhqseDAHHXjoJ1xr/ZSwQO UmpDmzb6wmwRbaLyzUOgMR/FZUtoCUhfBIEECV/KUHW2lqsZ9K7bUysrEsqiZHKo7VyqLkO0S5Z2lsQ/wrkdiu19MzKozI5F1yuRrMgtseKLYjradY6kAWuF+2zrskY4DMZLPB0jzeAKkKHSZEHlTMzVDOjZsnRkI27j1FOpQvX3PU51L1VRZ2UHt3lPizo+gE+cCnlSz1eU+gBZD8jCDUwscJOJ0GXhhQI56k8EDpFVv8UE4IG5eAnHRJGX1UeU 9XQjflSmxUtW8U9FlGMjVQabeBKG1ABXuMEspAgDQQwYED7QSwDkIEpRhshmBCACAIVPQOpKYDRFiAn6/+tRvoHkxMgKepgGnrlxNEs9ncXPewEUkF6i0K6EvT+pCoD748CqavWESr3DLv5ARJvU9Jb2oA29JyYBp3toU97PsfegfbHmVjD7R9FyCWFFRJjhKgebDefU8ognL7MQq+jmIwGCnTdUihm+aqkqHbLUrNmSxTtkqW7Wa8ltQ5KYUvQD tbHAXWnrX1ufgDahtI2/AL5tu7JYt9GQVPbfoz1tJs9/yLICfs6qjZC9p2YvcHiv3l6dN4BqvQpJr1Don92ixvSVrf1FdW9Kydvd/uVhd7/gUMKfQAfEPsggDzRBACPuRhgH/FU+qA3PDn0Sg4DS+0gCvrX0fZjp1w5HncN+VXT/lt0wFZjvQBitgYtwDKJKCxBrgmgTQS0QLGZApM2AvoYkBiuDRZxbG1EN2DpGHBqF1gjNaeRaxYir8QOB5Y1T sGeLZq1g9wOiLCFrDPkEOqcq6cYi21QlEmaumtRrrrXHb8mvK2NmXIN2CrE2WFUVd2oZm9q7e9uL/gOMHWyq3t8q0dfxw5IE0/eAzDVcMx4CA7m2LUUSFAkeAoIx5iAmSFuKNz9tVRqAFUhhiT4etd1qs2gUvMNFvbV5lOr0ZeNHXx7E6pQAxb1hnZ7gtZYwWhCUC2AHg5CYAV4yUEKPFGawwIESOUdz6fG9wwYH1a9FCBQBeNUQ38KjHGnChR1T cYsueE6gtxS29DNE3obmDTiCuQcF5WqnBDzZMT7IZmISZ6oknTmbsrw+zTSyaA1WC5Jek0EGDMA0sHQfAOsEJ6+hJASQS0fsQ9WgyJt4Mznkgg2Dnl18zNNiCeSOLyQawCs8/IqUXVjhs1IETYDWHMhH54MSCGXRUcRoQQdQg8piGwll2K60O2c2o0SNZX0h2Vh2xo1rpO0tH0AFHFtaUw6NMjbtYqntT2IZX2r+x1tGVZx3/5UVW5zfCY3plp6/ b/t+YBY+Jy8TCQwIpFdY0uNpLi8g6ux54ifg2j1hlZiO9PvuJD1HjgzadCPSaSp3eim+V60NTeyZ2vD9K6wZwK0CMCIqOAvh5mITx7BzA2A6wQgGljVZjbIRwphNRDIUiwhjIOwJZjvg9awJASCkWSDxXeDr5RINYVU7JDogeNZIoEU01+TTnyQ1+Q4ZMSOAOA+7SxOMytYk1YQCRZa9Ru0xAQdPNGm1+upXm2Ku1Js6ZrI70w9t9NPahjjc3kXK rt1hmhRYI6Y+qox2arG2YzMLFqbdisR9Vq6ntt4lYhQ6z83wLU3sED33H5KmfUPcWfD0eio9ga8gZWbj3XqAxtZ+6egGZi4BD454aoOeB7A+UKArQCgEkAQDVB7gRgZ2DwEnW+ymeQp/ViKY9D3EzgpkOsO2CgSL9/2quOIG8RZqcF7W8Op1ijNrCr9mIR+asPmrRnfkDgCkFSIeTkirbUjZkMWviKP4XmZaTiEkefzrH3nyZhTfle0cu2dHKmxu j870Z9Msd65v5l7f+dGOAWxO4ZnqL6CjOzGAdkF0WURkOBan2EgdFM8Qg9bpnB2ukPYNxZVNSU8zC8s46jrwsQBLjkeu2RWa3nVnGdHh1regHfjOBhAWICgMoEOAIwkgz8d+IT3PAIwBQL6TQAjAFPbsBLtmyAKTUrAJBKwx+JBAZAiTi9OINYIo3pE+AQQTIhkWHdmpOBFGjgBCe6GBAOAWl1txkeSCcEMiEItzbNaowSMSagV4S1l/OZrtyYNr i5p21o/f2fOG7aZblm3rXIGP+nuRf5odQBYFHjGhRL6UK+BeFkRXtVFYZmlAlnlSzFOXu54nFYnnrqNRIO84FsbKAqykdB6842Hrys2yCrZ6oixepItnMyLYasq8zrVaSBUYnFzAMoEnExH0AVqaIHSMOLM0ijiCTDHJA2sRJbM0l62okEfLwYYkukYCO2GzUJWgED+HYExDMirbFRxa69KBntjM0pTVYM4IBDkimWyx55zldde5VsqDtBHe0zre 12ihdd91ukUm0f5jy3zL1mufgTHk/mAzU6z2lURnEyRBCnuoJFpAwQIXlOzmIcDz0rAehxe+Vss7JCdgNgMrOnfdb5e+tvbsruF7jjTqdnE3b1Ou4INYgRCaBng6wTQBSFEgUh9guAMJggHiCaAqwFMJIMQGwBrBiAmgOoBSBPylhsAWwbAMQE1ZyJ3AyIX45jLAC3BITX2vTBjWfAUW7V2AOoNUGwC08KQqMUmKQHbC+gfASQNVIfDXDAx6AA51 nkzf/T8QJduq5Y0fmMv5GebpFIBKxDPzzaPMUCVZiLuvyYYijLEUDqfggjwZgIepglIeVX5u6H84ppiEKQ1tnmdtiTU4MA76g3mDbpIEB6cAfM22BVzlj01lDu3iq3rJUQY47a+sjGsbYx+3UFYYrVBAbfFmMyDaB08E1Cz9/mjMyhvbH4bzmKJI8AiRRJczUdhPcjo1kQCxOId49rJFhA1hI+Sdqs/TvIso1wA9UBED81MqzhBZhQaAOCEyA5Ek OvwBgIQAQAUBzwtp8BzCR4j1gwBCjlLVAF9CAKpQKu/hCSEgegOpHuj/RxkFUf62papjxYBAAseAKkYd11Nh+YcdxLsgljtFfiXdPmOPHejgx10c9Pdr3HLy4KF49Jhm6+1fjsJ548AXk8PrdJUJ8Ii8cIw0W4U7AzE5SdOPkG6Buzf468f4ozNYaZJ+E8CdmVyTmISk1zN24FPAFa4MkxSeJN3wFB2K2p7E4CcZBKnaqAWD1dXD2OFFmICUJ/DV E7AEEdsR8jsFW3fAMKlQbAEM/wCWjBwsIZIEL2cYehorVYBR0YFMLrk0AN8egAQD3h61z8Z9uoEK1KdxOMgkTgaPgVN1eR7HLIEgPkPTIKOnnxAKUBFWQ5vOMYxANLGwC6gNPUUwQfM2zJIDIkb454AkHfFIDKAGQcMD2EOy4JIvgU2oHgLTBFDkxlAsYQUFMDhe4A4YhkYFES5vwdg0C6L4ex4YceMJB4u0CR/s4dDpBUkhj1UEaPhAmPIHN4VX vB2ZjRWuXJIc8krb6abtVeuITDMzB4C02JRJIZmOfjXCHAftIrkkLsB4Brh7gvF9l/sAauThcQ1pyACSGeD1XcQwr6V1PMODMwu5SrrYOeAErr5+XOwOoAjH2CWvpXPAc8PEGZhJAndSr/YGK+iuKvpXa4J+1A6VeThyQJwAmv3cgBMvgo1j0kS1F+N69KR/L3EGuEnAKupXGO5V6kbVft2s3CMZmBcAuD8ug3Epsx1m/PDyvzwk4F11m+ftbAEY 3Q9l4cFxDrA1wTr/lyOHiCVu837Lx4szAtdTHTXbr2sL29KACutguII/Ca6zeyQxXtwb19K4LfnhTgPs9lwjEnB1A1wY4Sl2AG454A9poQON/hzZfjuEY57i9/y4RjxAEY9wAt1e9uANWO3Sri91q7Xdnvz3Dbsd/q+vcIwG3Grs90kD/fnuS3k4RtyB6VdrhHXWrod1m7XBAfmYCMAD/q6DdIfn3gb1q5W8Xf5ujX8Hq9+e/uA1v8PCMQ4EG93c QmAVlzy2PQnJ66pxRb+DSCHGkCRxo7YIUIAuTXjnoF57Oc9G2J2qnKoA6MG0LiTQA/KBjdHyRxjuYBZ6WFZwisCK67S6CVg7axlSEH0BceUov5aN6EAxOxHrQuLkVyiYJQmiogXSb56bLwCfpWPpQEIJ4uUByP9PxIF8CK/oaSfwL3zFjzfk3a7dvmN4mzzp9xN6ebku7oR42wufFtyYYMXT39sZclpfSLUMT3ZqIBWexi500oCWlkeieXD9uTj3 Eay97wLndgQTTkFaAlo4A/zwF3F5Bd7iEQyBhAALFMKMGGXBD9RE8l1TxpaWBgXp9q2TslXtG0J5mHV4a8EhikGEcAAsRNt9xBZr4QsEAA== ``` %%