==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠== You can decompress Drawing data with the command palette: 'Decompress current Excalidraw file'. For more info check in plugin settings under 'Saving'
# Excalidraw Data
## Text Elements
Understanding = (First Principles × Pattern Recognition) ÷ Abstraction Layers ^7bW83B1C
I feel like my personality type’s weakness is getting lost in the weeds analogous to thinking I need to learn every electron flow to get to a solution, so to me, what does minimizing abstraction mean? ^BtHCV6gX
"Minimizing unnecessary abstraction" doesn't mean eliminating abstraction or diving into every low-level detail. Instead, it means being strategic about which layers of abstraction you interact with for a given task. ^CVu6Ja6p
Choose the right level of abstraction for the problem at hand. ^dBZ9jRn2
Choose the right level of abstraction for the problem at hand. ^WqxX5rR5
Start with the highest level of abstraction that solves your problem completely. Only go deeper when you have evidence that you need to. ^73OdZWIm
I've the tendency to dive "prematurely deep" into abstractions &
inclination to preemptively drill down through abstraction layers before it's necessary. ^KhOzsrOF
The "Just-In-Time Depth" approach: ^eKFW8pmU
Start with a clear goal - Define exactly what you're trying to accomplish before exploring any implementation details. ^MO7wN4Ok
Time-box your exploration - When learning a new technology, give yourself a strict time limit for initial learning before building something practical. ^Nkzyoxfb
Use the "Rule of Three" - Only dive one layer deeper when you encounter the same limitation or confusion three times. Once is coincidence, twice is interesting, three times signals a pattern worth investigating. ^xGtYXcsW
Practice "deliberate ignorance" - Consciously decide which parts of a system you will temporarily treat as black boxes. Write these down explicitly as, "I'm choosing not to understand X right now because it's not blocking my current goal." ^WxYlEzq5
Build confidence through successful implementations - Complete projects at your current abstraction level before diving deeper. Success breeds confidence in working with partial understanding. ^opG0GsUS
Remember, even the most senior developers don't fully understand every layer of every system they work with. The skill is knowing when deeper understanding is required and when it's actually counterproductive. ^vRAR4gaR
## Embedded Files
ab366bf90f5a707e8b13ec3dc32db7f46eec0cd6: [[svgviewer-png-output(14).png]]
%%
## Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQAObQBmGjoghH0EDihmbgBtcDBQMBKIEm4IZlwAGRIAdgBHACtqgGVJAHVMJqFqgC1CJOVW1JLIWEQKwOwojmVg0dLMbmck
ngA2ZIAGePX1gFYAFnitraT9vkLIGBWARgBOTaT1x+Oktbqkrfv+UooSdTceLnX6QSQIQjKaTcQ6XMYQazzcSoLagypQUhsADWCAAwmx8GxSBUAMT3Q4AMwpuHii0gmlw2CxykxQg4xHxhOJEgx1mYcFwgWydIgFMI+HwrVgCwkkkZGkCIuYGOxCA6AMk3C22n2aOVmJxUpgMvQgg8ItZUI44VyaFRVwgbAF2DUNzQt1OaJZwjgAEliLbUHkALpo
inkTL+7gcIQStGEdlYCp9IwW4Ts63MQPFeETZFJK4AXz1CAQxG4t1uax48Xi9weaMYLHYXDQPFujaYrE4ADlOGJuDwtjwa7dDvHmAARdJQMvcan4MJozTp4gAUWCmWygYKYyKV1K5QkdU0HWBACFbri6aU8xVZ5goBAD4WrqGHUI4MRcLPy+66ocDx1HU8S3ABdQ/A6RAcFi0axvgaKEkyc5oAuYSFMWhQ5pAR7oCeZ5JJe15onePJYE+aLLGgqz
ttoVZJLsWwQTw+znHCpRuqgzgPLcyTrEkY4nLW+z3MO6xov8xCAmg8Q8Ic2gHGconrCxaLgpC0JoAJ2j3Ls9z6fslZ1Lc8R1PsdRooiJr2vC+qqpyRKkuSVI0iKDJMt6bIcgSjk8uQHD8oKWQUQ6YoSkaJpSPKIhIHqKo4uqUmanaOpxQaCARcilQEuUaKWpImaBjZpROoyroVp6DqeX6Ab5O+8LhrgkZ/qgMZxg6CbEEmEi4FsaZeYVcHtbZpYt
R8BwgRBnbNpwFafNN3YcH2HADv+wFgd8HoTtOwS/vOBBLg6K5eRuGTBTu9WlJ+357f+gH3MBoHgZB8LQbBaBtQhUFsMhLVoQgJHkRUACqiYsLMjhzKgAC8qAABQAGKEODqAAAqkAmLo+OEqAAOtoz+s6kBwqAAEoIHoygcGoLYAJSoAA76gACC9i8jMLaoNUuAwF2FqUAAKkDEig114PWJDygw/DSMo+jmOENjzB4wTMhMCT5OU9TUB04zLNs+QH
OcFzPN82GnBQK0hBGMiPBJAp5JMUkxl2/EsL8eb2QI014qceJDoPlAzNEFTFRiNkTAik2OvuMHkKtug+gkMQCxono2S4AmTBRhIVS1MQjQtO0XQ9P0gzDCKRKQgmBBC4+INg8qEsJlLsOI8jypoxjK2K8Eyv46jhPq2TFNsFTNOcPTTOs/qjI68b3O8ywIq4EIUBsOTrA29wGJCADUFZwAEhCUJPu6yT7BhvzYWULUQOeUCH7iABq6zKAAGiKpHo
IHIpUVxXw6jaBHGxMczsth7EOOOB0nFuJyW0IBdYxx7iGXeOSR4EkNTcDMvsBB+kNhmRArcVSDp1KnyBB2B0VlkTFQEPFPEPluToBJAgM4VZbhuUZMyVk7IHJMOgP5QKQoQoNXFJKaUWU5TYAVLFB0dkEpYJSrqOR9DMoVDNLlB0+VBp2jRKVF0sAKq0IgNVf0F0wwRgQDnVq8F4yJn/giDheVVw6JscNUoYQUKoAeA9HYFwmILRbBQwJvZ+y2zq
FsQ4zt6zxG2jOLx/1lyrlOluHIdU0TXR/F4sC91Ho5KmgfGCQ0vqvR+jiP6B1965mFugX0qAKSlnwKgIgOJUD6BgKgRALBOAEFdKgPMgBMAmVhQEIWJCqoEIMrZQCAZAt2aWwTuCZ+nglQCMssytrAEDHsIZW68AA62RJAJixHMup1oyz9LYM0kIxNUAICbB09IMxMQkwpISCglzUDTKgJ83AqAzRrxbNQf5Vz15tIBqsuUPziBsHCAcpO1Mk6WC
hrgA2c9OaZGsAAfn5hQOuZ9an1Mac0wgrT2mdK7D0ogsB+nwAQEM1ZozxmTK+TMnWUNCSLJJuoBAjL1moE2YSZQOzPnqGOac1qo1PnBEFCTe5TBHnBGecbN5bAPlgu+b8kFvh54cGBYIT5mRgUUChagGFOMEWECRXM1Fs8jYk0xRwHFntLbW1tsYikFtvZJ3wH7QGj446hwkMECkIjSjR3MAQQNCdoBOhFOnKIWdSDWM+nojG/ha41IgHUhpQQSV
ko6V0wQHBek0sGcMplNoJlTLZXMzlPylk8r5QGAVJahUirBWKmCErznEGlTcuVDy7lKpVK895nzNVgr+QC3V+rQVXKNZCn8ZrYXK0tdalFaL7XguxSvNeG9whuv2ouKppRoIIGPhpAlvFzhXywh1O+L8hDrAAFK4HWHAL+dL7xA0oisQBwC7YXHYVsSs7w0SwKHDqIcAkPT7H4vxYymCkrYPWNqUy9x2xjhYkQ9iYIT6aVQKBSycxrJpXsowpylJ
qS0mXFwzyvDKN+T5AKYRIowriONJI6KipyMKJQ0ovjGUJHqJyuWZxfgCo2i1Ho505V3SVXhKY2qaAQwWKalYlqqaOr2IqLgHg/UMzSY+rYuRo0KwCQuLJfYwIQkJxQXZ5aq1UAQUwyZHgES4m7QSZUpJJ1NznXSR+L8WSWo5KAkQ56iFjnFMQmUnzJ7/UEogHsiAABZBMVrrZzLZNaMQWZBQdNtezXVqWV3hA4AAch+Y64dWWS3sqlsVw2urUBEj
NYQMwcwDkJjBfK0gHT3nOGCIwJpXVE34G0KgX0AVZy4GIMCtQO6AqoE0BCKGs9ZyqGwAK46PyTXmEkM002LA2sUgOc19FxsYDCAmRHFrqy1BHc9aQAVXzOtZH6aELE2hcX4oqKljLiLstQ1yxTG0hXdt2tKxAcrzAqs1ZCHKogCKfw2q3a19rjgutS161c/rg21XDflWNmZmdJvTdmyEBbEzEd8lW+tqWm2EDbd28IfbRzpHHaXsrNgFIoclc5jd
oQd2iZz0e+oep7W/mqEYNy77v2XVW23m2D1Xqfa+u4P7apAaQ4xpDWGyAEbY56/vHGtOFtM7WmTVp0z8Iq4ZvwP9iQgPMsbqlmD/LVQBsC5ay2Mr5r4fVeW3V1HjXfdXZJljzrcy8d3KHUNkbebxvk6mzN5U1PFt05W2tuZzPWeovZ5Cw73OuxnYj9u4XoumDi/+JLl7b3ZefaiMwH7e716byPahXzhSL0EevRfO9JQb64QgMQc8fR7hNFJhwAzJ
Fv1kXrn+6iI4b3xBswBFBGx6xQIg1rp4rstjwcOOsOo6xiEvT+Io1A+wLjAKSCg0DKCBIkPhGQwjHmSNIhkyo9KfCqMuS0ZHT0Y8LeRcj3iCKsbBTsZiJqKyg8ayK2T0KJTSQoipS/6qhwGmhib9RWjGYoiyZlSGIKbGLKbmKhSWIpp26Hi6Y9QpASZGZZixZmbZLHAHB1gn5JB2bcAPSOZhIVTn7P7uZeYzIJaHTwjHTsgpKBaqaXSQCZK3TeIA
QRZPSHAFKvQxYmbuKQBITlLHriG3hZq4iSBsALK8pNrprSDXKjbl6XbboN5NpwCYiaCbgCo/JyjsiK5aKCxGEmFmHLK8qWE/JJ5NJ84V6tYOErJOF2CuHLoeHEBeENQWzK7uoureq+xa5JbRoVAG5RxMAxxRqm48jm4OgJpW7Zy27aGOjpo1xO6+GmFhABGoBBHWF5phF2ERHtaOHOGxHuESyJGlCrwd6Hoq79KkB7zRbWiXrkLny3olCYTD4PoV
AdANCYDvz7CkCkz7BfqTCL6G4QD/zOAjjai34n66QPDHAgTkh75oCn46S7C3AiS3AqQMQqSX6QCSSoG35xB2yP4PCsTELKJv796DgWRUKkY0JCb/4SBkjUauR0YeSgHQk/yQFBTChhiwEibwHSIxRKjIHX4nFCZYHZTmgSZ4FMG6IOj6LybeKKalBkFBYNSUGVElI0FdQOK4CHCGbECuLaYjReJDiViATuxcEOhNiLQWaULwjikthObIi7B1iPH3
BJDQLwiTI7SiEVKJZHTJIBbbiMlXQhaKHhYPSRZqHvEQBvTMGlK/T6GnrjD1H+EWFXqtGhH84dGcyRG8rREuEZBuGoDxEDGQDkB4qOmNHOmnyum2EY6eldFRE9F+lxH9HsbJFd68Bq5ewa5+oBzkTZHBoIChp5GkAFH4B5k/wlHwhlFJpUFVEO61HO7oDGENHmErItEhHRnQ6xmvbdExGJl9GeHt4HpbzIi7z2mWlHwgmzGXzzHXxLHHhJAADyxA
fQHQvo+gOxWUv8y+ACTEgGoC5IPAmGNmNxtJcQhwmGbx5w0SLEqpV+AmLmhwuC5w5IzwZwhk8GeGUgk5N+t5kA1CP+SBf+TGzCzkNGnCiJq4yJAiLGaJ+xHGxJUiMieJ6UKByUaBQJHiqiWJ2BpJWiwg5JRUhBBinEHopBrINU5BTJGmNZrJOEtB6AuA2xDBPJ+BfJHi5mWk7woGp+9Y3BaAdQn5MpoSK0yIYGt+VxW0HUU48SWpBh9IupZ0+psh
GSRp2Syhppqh6hZ6mhbitFlp8WslY5v8EgUogo+2T2TRRyUI4QwRJOHZguxs6gy6ZojAyswur2Pprheg+g2Ms4vq2gByC5HAvqXyVyXUCAXSkKn2VecojA8eJAWQYgyyy6VevalyQZEAIZDZEAplxZEuR2TaVl4Inc7Z7RMZjlpqLlOM7lnSCZ+gqA3lvlQQMAU2QVIVwqZqpYkVJq0Vt2sVvK9yCVIlyVPyqVUq68GVnq2QKRg4GZUA6RmutxWR
RR6AuR00JZZZsan6FuGc1ZLJaa1cba2VuV5lkuhVGkNlUZZVnZFVzlBIrlqANVnlfpjV3m/lqAbVHSHV4V3V4IJMMVuAcVg1XUw1Tlo1t2aVE1g5neoxiSve0xhGN605YACx+4apd8AA0pIAuSYKQAuQjBuT+kvg6IcQBiAhcKvsCM8RhdcLNU8LWEJFWPsJEixDTRAJ8WhcBPbJ8PWOcABO2KZGze/gSkcF/mRhgTiFBSwmwgJOBdwpBcBdBQFF
AeiaFJiVxhUIhbiUJqhVqOgYBZgdhSSZovCNovgcYtScQbSWRT6GYgaZAI1M1NaWyd1AxesNybydQQIBxS5qfmBkxBaUJQnB6GCdKV2LKfwfxTWOeS8KJCIYoXDRIQpakpRYaTdGpbkmaVpToTpWxToQZXaUlhUL6JVnFU2rOImCtB0mCtjryqlk4RkD+DFCFT9WVnHh6ZwMrAAGQ9YrTQRo6OVXIN0ZBwA6yjYdJkBiIroUDcqSD5ThGcz4AnbK
xrYva8pqCVbKx5YQ4DYZVZVZol1l0rIV0g3YDV1hUfaoD12BD6BN2BAt1dVt3ZBXId0rY93Ux901ytZgrD0+Vj3NVmoYwSjT2z3z2v2l6nar1Ejr1QCb2Spe6FaTWpmjFDhpFZmZE5m67xw5EFn7HG6FHYPFHbWlGW57XO2QB1lHUH2l0tnmFZCn3n0dZxXX2N1QDN0T2P2w7t3lVv293YD93f1D2BAj3/0t1ANjZqqgP4VHbgNL084M5r205wPb
0Fa73Q0jEjnjFjnnoI0D5zEo2zno0VAIAY0IxnhwD6DAyE17F/wrDAjJCb6gTn7HCnBuwnmHmJBuxcWIYxICTa53moFrDyTRKx0RIRIv5C3fmf7gnf6UkG2S2K0ki4BJBUiaBckIny1eRQW8jK2wUwHhRG1a28YS1qgEn62YXpTEkaLiZ4WSauIW1yZW2kVejkV23KUUHUX7U6bsl6Z1Ae34HYTjAL68BFgljZK7AiSGQTN8XeLr58EiUViiSVis
0qnx1iFjmSHrh6lpLtPwgKEZ0qH5IWlWlaF6W6HrNF0SACwrKpYvpCDKjOAzbOACxWq8rTij2SBla4BwDRHyjIB/ZZrXN10QB3MPNPMvOZCoDvPqBfM/OYh/MpnTVpmoOhTq4+rZk65BwrWWm4NFkbXYvrzEOVmkPW40UHWO7ZVAtX0gv3NQCPMuAQtvMRUwuw7fO/PSL/OWT7ow2aMTHw3flI1D5o2Hh3y3CkACzEBYg5A9jAyTiaD3C4B9DMzo
xbDPwACK7t8+ux6A0wsw3+25qwxCe5wGmGaCj5J5aCyQ55AENmDEzxZk/jHx1+Aln5wtWuv5CIEJAFFTFG4BMJyTqT6TwBEFWTitOTQi0BGJBTGt2JSFOtZTbN8iwmMbOFJtpQZtFJBBVJjTJFdJkADJuzpQjtmm5DZQ9FCIdQz8/Tmbgz0AwzBYYwqN3tXiJ+ewxCtYod4a4ds0bYgl3bS0kdqALwAlVmXwazhlfmUh2zO4B4gzOEd8aWC5dQFA
PYhwC5sEoIt4wz0AQML4b4Kl6dYW6leSUWhS70ulcWtp3eJ6QrI+C7S7K7a7G7Ac27W5JN/6u55N7YprD+5rMC3AKpwT1rj5wITjDryGqBxkvE90sGFwKpzskTV63AotMT4t8TDCfrzCAbFIaTctDGYBvkKJMFbGUbnGkURTiBPr/GqBhJJTVTOBZJUmmbDTRBubNtn4bTQYchoozJpbnUrtCIQBptLirFXtlQPtzxZwAk3w+kMzGwUpXbM0A7Cz
aAD0p+Fwp+xi6pMlhdOp/milOzXHB7oWc0mdmlxzudYn5zE7mDyWJ1+Vb2/DNyoVBAXEULBZWcdymAc8IVJqKVwglWgQYxMAcyU62Ar1kyR2UDgQByWAPgVcKKHAHSVq2MqSA9JMKe4ozAe9Ph9cJlUQeVdeMjDVMqr2wqrnzg7nYo1oXnPnHSfn4NQggX5hA2oXL94XBgPgkXCj0DXn8X3cTWSXEyPl2z6XnVE22XiLrqKDc1C1GLhhWDQaq1uL
61kapZ2LScxAKclHkAVZpLor4rkr0rsr8riryrpAqrGrlcNRVDeX6A9nRXjnpXLnTSlX041XA13nMwvnpqwuzXwXbXAqHXI33X0Xn3/XNqQ3KXo3rWmXi4GVQxQ5aZo5kxfeSHU5t7c56A9A+AfQzgL8XwAA+kIBSLcAuXAH0M/JOD2BjQAOJz4vvauZUUx6upzvvUQv7Gvft2y/ts2cRQLagqkPQgd2vqeOvs3X4nCdv4bo9Dsev/lxNUcYeEcQ
BJMpM4dBsSEgEK2YdK0Ruq2iLRvkcIHIWqi62CZ0dG3VO4FMeEXZusdGItO20qZGcdNO2nN2I9M9TxBVvMWuK1vfwNszksFhanGafn7S8MD9uDh9tKdynIdySRKP6fnafeY2dJ36cp35CzsHjzsVA9hYhGA3aYA4c3hDNM+/x7tjDcf7NHtmdHOTHnt536VXv1KVKY9GMSAF9F9sAl+aDWM/y/rs87lAJfsPA8/kh88wiPlWvC+2tgfwYQec2PDa
DASmu2u6RRKxKkLfkofwgK9ZvodS3Ye4cZP4fZOokkdq1G/cY4nFPofm/oVElW8Me1MEXesUM5uO9VStMu9qZu8lsPe3TATrgHuDVtAwzfTxC1A2BDhYQj5SPkHUHBoZ5mzmR6KJGdiSU1S0lNPrpwz5TsDOqdeQqpTr6HNT2GhIpEAJtJ6Fr2clHdndwgCMtnAK4TAI9WECvY4uXIMbpVw6B/VrksqG1JKnVQUwCoPkZQDAGBRN5WBIgMIPgHdL
/IMQ5gH5DrEyAHIUcS2BvJlh1iudSuH9KWGD1WxCBxQksEFJkC7RSwnC6KdwDl1DL0DGBzAqQewMwD9cuBqAHgZ9h0ECDrQQg6RBwFEHiD3scVdyjILkH6hFB/SV5iSiTg/INB2sKwE0g8FQx9BmgQwfgGMGCBTBRyKGBYI5hWCpuM1VXGg3RYYNMWm1NamKXyJrdNqm3bbvGhJYVEKgOPPHgTy2DE9Se5PSntTzp4M97cN3TNLYNeZMDe+Dgvrp
wNazcDeBCQprIIP6TCDfBQqfwZIKCFBAQhCgmYOEMhZqDoh7WTQXEL4HEw5kSQlIWkIMAzJMh5gv3LkK5bDFhyO8LRqj10YVhB8wfRYp32wJoZ9gVPXEEYEXa+gX0WIYGALC2CoxJw2AQ+AP2Z4zB/yBrTnmPx/aT8TyFwIBG7Dn6gd7W4vDmtgl4I79ZevFVDpCRKbH91ep/YNpk0Yy69w2KtOCurWN538du6IFCgm2f4ptjaNTYTnU3NpEUaSz
TH/s70IE8dOmfHctqAN961NGC2YA8HW21ZB8DGIfCsNTUREiQ5OsfRaPH3dCsRjgYlbflgI1IJ0e8eArZgQOz57g52t8CoJgFp5QAAAmu/GwDMAOgZfSUZuV3Z7hXw1fYzsaWPZZ0LOFAi9t9Fb7/QO+IrM0RaOtG2j7RWrJ0cTXhCk1P2QGbnmayn5oBWIcQZETa1RGn50RzrXYHRH0gqkdgMGQEmpG/LEY8RH/ekb6xV5q9A2eHJEmG0v6Rtr+
ZHW/nGxKaP9aO6HejrhTZHv9Fen/B3iQSd4cc/+3HYtmS2AEclmY4A0tlAIA4CUcExCBAdHzbDn4UB7qCCOvkuJajDw2AzUrgNKCbNpCSlV3ns2IGmdSB5pRvqW2s57iHS9A4GOGRuYQBSYsYXlGEWubCMyslXT6kw1fE1c5GTATqhFQAk9V/qt2RKumCJhNEqgKg4KlliiCY5Xs6cCkPc05jqBhG6w8IK1WGoso9ACsU+hCigD/AkqLKXrEwBso
txgUaE0sBhOYAHJWAVMA6G9gFBqxbkFAIkJLgTCuUdYygNHHMGsHZV7xtDals+OCDl53xpYT8R9WCoT1L6nAXlP+New/VgJvAqvOBLZCQSm00E+SXBLG7tYkJKEiquhOUGYSpJxE5WLhJ7j4TKJRE9esrFImBBlQFE5ZEZNebKx6JbaDZJ0iHisT2JR2TieRJ4mNYkGSLGboUIyJLVbOpQlbuUOLKVCNuycNnsS12r7dRM7wz4d8IXK/D/hgI4Ea
COu6HU+hyWQSU0VSwiTXx/OcSQgEknfja6bWP8SdkAm/VeqIuNSfdigkaZIhagXSYhM4DITFozk6icZOy6mTbJDVNgHhMSoESbJ1aavA5MayUS56g01yf8njiMS/kzEomCTDYnFk/JHALiZCF4nKAEe3LDRrcL5bkC0eMxbxE8JlEvCgxEgHgKQCxBk9JAzABGNUB4ALl1gBgIwNgHuBCBCeAsBoOCN1ZQjh+hrH4nGPH4JiTyBwXBKmJF5gdMx9
5YCOLzdaqcFOf5L1r2PLEJNdeVYjXjWJ14q8KReTUjghRN7xt7y7YpXp2LTbBlpG9TTkU0zzYmJf+fI0cV0zVJCjmYIotkWKO4AB962ozWUe6FzEQIxwWIsOkpxj6rjFmpwCJJWC047jdR2pfUYeMM67gxgJo0fF0EtH4A1wRgBoExVz6OiiaT4KviUBr6ni7o547OuOR9HN9rxNAhAIGLz4SA9ZBso2SbNzCvsh+0Yj9qPyhlwi/28IP2GhgSDA
d5+aIpfqhlwS34LyqCP2rWCLGy8Sx+/bGYfyV6EjqxZ/WseSPrEG8i21I5sdrVbGMjLezI63oxyZn29iK3/JTOzPtr8j3evo7mV7wYrngpxlA9itkiQRqEgm80GKRKWXGYyo+cfQdiZDQx2xHiskcdjeIgAHjp2zc2vmeI0oN8z2V4gui7MuboB0Ylg4Fl1CIBrZyAs4CZFTCJDWAxAkk/EAFBdA7IH6LoLqMXi5ysYcgthf5DAAzz1Uq8/wCUAc
lnA+VL5QDauoEGXShBVsS9JkKtl74mSOgGMM+TykaIwoZ6Iw8wGoBCqhBgUqWEuvVWkQNE5kvgpQWwAOReQuwEMVAO/GaIulfBHyNbHgHuYwNlGbAH5C4TKRzJyU2AEQMIhe4BUIAALegfvJyGHygghAE+VknPm+D/I182HJV1vnMB759zR+QlRflHY35vOEIV/MAVSDHswDQBXAGAW+wxiIQH5BApcJcIYFmAOBQgtobILJGaCgxJguYDYLs0lW
PBX4VYBQwiFnyMheLHZCULqFkZWhQzgYWNEN6W9FhZAvYVQxOF3C4KLwtSx5DkWs3dBhFJKHYsyh0s/FoQ0TgJS6Re3eoQ9KekvS3pH0r6T9L+kAygZ+UillmiEUxwRFx8mvGfPjiXyRKN8zuoouYDKLn5B2V+WZQ0VvZmAWiv0r/Knr6LDFIVDECYoFQr0oFWISxdYrUC2LeUKCuVE4KICOKiszi6lrgoaoeLCFkSsFL4qbj+KqFLRYJfQtXhhL
YGES1hboQ4UdIuFpAHheV0myJKrhSPUYij35ay9BWzw4Vu7L3n7BJAh8LEEkH0AvoOA1QTAOeGUB1BMAlo+4B0AFj6ARgEYqYCzzBkByOeRrWERP1DkcRsE9jBGdHIzGxz+KSGbEVdNxEZzYmWcuhEBXxkn9Ne+47XqGwLnEcGxhvJsZrUpnlzqZ5TRlYbSrmv9uxtvMsZbTY6DiKKzczmYKI7kIhzwfM9NiJxrYSjA+Is/knXwggjtT8SouWapx
eC7Bk588neXp3wFZ9VMOfPcECsdBwBaeWwWnswGBjorTZ38OgRbJdH7tgsh7NeSewvGbye5+df0e3wBV3sKgToR1c6tdXgi32OKkflz2hm88TyIETxlHPTFn4KVvtE4iJA2BJzjIKc6lYRnTmDFM5xiJNjnMJl5ziZ/CUmVfx5UUzaRpvajmhRpnCrDQL/LsaqvZHMdmZ0qnkUOI5m8dg1ZbRVbgGIiiiWKmbSAT7UAhOwz8dsOTiuOHkR0VOszX
SC+VODi9U+u481erOXmFsiBfq22evLIHaVHZVnbeW3zVkLdks54I4WNI4Bih8Jzk6Rv8iEDhcbQyEppNDwM7pdlYcizrt5lqpsAmgLPDZI11IAHJnlPC2RnZX0HY45kSk0gFNlaCfqvcq2YRi2iQlDViJW0okCcm6wcBHub83YScohgtx+JWaB9UYKfUvrJpb6yTB+q/VZgf1w3VLsFAA1ud8QI3UQqBvA0zBINww2DfEvg02FENMeKGChrQ0Yaq
0mgbDeZN6l4b16BGp6XMlI1mVyNjcSjXxKSWhTUWmZIoWkrvVRTCyq3E3DkogDVDEppQApTbgqCowQVYKiFVCphVwqEVSKlFWipqX1kaNj63Da+rQnvrmAcmtjbGA40w8WwgG1ALxqaoCaIN/pGqqJuyAL1jY7ZSTTjkalMBZNrGleopvo0qa7sqyQjRpospkbXOFG5uHps+U8szp2jCcn8pumo0I1EgOYEuUIBrhD4mcQ+D2FVYUB4gcgXEK0De
QgysVXraEXiuDkErExqAesLxFJWZrkZqBE4B63Rlzax5B/CtfQirXEiteIbMkSTMLlUib+fK5tVTJo5CrcZybSKNXLf4SqcZUqhufSSblHqW5gAtuS7Q5KThu5qAIWVKK1W9zoBOwQDn4kXEyze2hq7xCqSrDsE9+24nURcwtUGirVQYG1XuFNESB6ApMZmKTEOA8TSYDoj1ZX29VujfVJnU9QGvtknNPtIa6gTevQjhqseDAHHXjoJ1xr/ZSwQO
UmpDmzb6wmwRbaLyzUOgMR/FZUtoCUhfBIEECV/KUHW2lqsZ9K7bUysrEsqiZHKo7VyqLkO0S5Z2lsQ/wrkdiu19MzKozI5F1yuRrMgtseKLYjradY6kAWuF+2zrskY4DMZLPB0jzeAKkKHSZEHlTMzVDOjZsnRkI27j1FOpQvX3PU51L1VRZ2UHt3lPizo+gE+cCnlSz1eU+gBZD8jCDUwscJOJ0GXhhQI56k8EDpFVv8UE4IG5eAnHRJGX1UeU
9XQjflSmxUtW8U9FlGMjVQabeBKG1ABXuMEspAgDQQwYED7QSwDkIEpRhshmBCACAIVPQOpKYDRFiAn6/+tRvoHkxMgKepgGnrlxNEs9ncXPewEUkF6i0K6EvT+pCoD748CqavWESr3DLv5ARJvU9Jb2oA29JyYBp3toU97PsfegfbHmVjD7R9FyCWFFRJjhKgebDefU8ognL7MQq+jmIwGCnTdUihm+aqkqHbLUrNmSxTtkqW7Wa8ltQ5KYUvQD
tbHAXWnrX1ufgDahtI2/AL5tu7JYt9GQVPbfoz1tJs9/yLICfs6qjZC9p2YvcHiv3l6dN4BqvQpJr1Don92ixvSVrf1FdW9Kydvd/uVhd7/gUMKfQAfEPsggDzRBACPuRhgH/FU+qA3PDn0Sg4DS+0gCvrX0fZjp1w5HncN+VXT/lt0wFZjvQBitgYtwDKJKCxBrgmgTQS0QLGZApM2AvoYkBiuDRZxbG1EN2DpGHBqF1gjNaeRaxYir8QOB5Y1T
sGeLZq1g9wOiLCFrDPkEOqcq6cYi21QlEmaumtRrrrXHb8mvK2NmXIN2CrE2WFUVd2oZm9q7e9uL/gOMHWyq3t8q0dfxw5IE0/eAzDVcMx4CA7m2LUUSFAkeAoIx5iAmSFuKNz9tVRqAFUhhiT4etd1qs2gUvMNFvbV5lOr0ZeNHXx7E6pQAxb1hnZ7gtZYwWhCUC2AHg5CYAV4yUEKPFGawwIESOUdz6fG9wwYH1a9FCBQBeNUQ38KjHGnChR1T
cYsueE6gtxS29DNE3obmDTiCuQcF5WqnBDzZMT7IZmISZ6oknTmbsrw+zTSyaA1WC5Jek0EGDMA0sHQfAOsEJ6+hJASQS0fsQ9WgyJt4Mznkgg2Dnl18zNNiCeSOLyQawCs8/IqUXVjhs1IETYDWHMhH54MSCGXRUcRoQQdQg8piGwll2K60O2c2o0SNZX0h2Vh2xo1rpO0tH0AFHFtaUw6NMjbtYqntT2IZX2r+x1tGVZx3/5UVW5zfCY3plp6/
b/t+YBY+Jy8TCQwIpFdY0uNpLi8g6ux54ifg2j1hlZiO9PvuJD1HjgzadCPSaSp3eim+V60NTeyZ2vD9K6wZwK0CMCIqOAvh5mITx7BzA2A6wQgGljVZjbIRwphNRDIUiwhjIOwJZjvg9awJASCkWSDxXeDr5RINYVU7JDogeNZIoEU01+TTnyQ1+Q4ZMSOAOA+7SxOMytYk1YQCRZa9Ru0xAQdPNGm1+upXm2Ku1Js6ZrI70w9t9NPahjjc3kXK
rt1hmhRYI6Y+qox2arG2YzMLFqbdisR9Vq6ntt4lYhQ6z83wLU3sED33H5KmfUPcWfD0eio9ga8gZWbj3XqAxtZ+6egGZi4BD454aoOeB7A+UKArQCgEkAQDVB7gRgZ2DwEnW+ymeQp/ViKY9D3EzgpkOsO2CgSL9/2quOIG8RZqcF7W8Op1ijNrCr9mIR+asPmrRnfkDgCkFSIeTkirbUjZkMWviKP4XmZaTiEkefzrH3nyZhTfle0cu2dHKmxu
j870Z9Msd65v5l7f+dGOAWxO4ZnqL6CjOzGAdkF0WURkOBan2EgdFM8Qg9bpnB2ukPYNxZVNSU8zC8s46jrwsQBLjkeu2RWa3nVnGdHh1regHfjOBhAWICgMoEOAIwkgz8d+IT3PAIwBQL6TQAjAFPbsBLtmyAKTUrAJBKwx+JBAZAiTi9OINYIo3pE+AQQTIhkWHdmpOBFGjgBCe6GBAOAWl1txkeSCcEMiEItzbNaowSMSagV4S1l/OZrtyYNr
i5p21o/f2fOG7aZblm3rXIGP+nuRf5odQBYFHjGhRL6UK+BeFkRXtVFYZmlAlnlSzFOXu54nFYnnrqNRIO84FsbKAqykdB6842Hrys2yCrZ6oixepItnMyLYasq8zrVaSBUYnFzAMoEnExH0AVqaIHSMOLM0ijiCTDHJA2sRJbM0l62okEfLwYYkukYCO2GzUJWgED+HYExDMirbFRxa69KBntjM0pTVYM4IBDkimWyx55zldde5VsqDtBHe0zre
12ihdd91ukUm0f5jy3zL1mufgTHk/mAzU6z2lURnEyRBCnuoJFpAwQIXlOzmIcDz0rAehxe+Vss7JCdgNgMrOnfdb5e+tvbsruF7jjTqdnE3b1Ou4INYgRCaBng6wTQBSFEgUh9guAMJggHiCaAqwFMJIMQGwBrBiAmgOoBSBPylhsAWwbAMQE1ZyJ3AyIX45jLAC3BITX2vTBjWfAUW7V2AOoNUGwC08KQqMUmKQHbC+gfASQNVIfDXDAx6AA51
nkzf/T8QJduq5Y0fmMv5GebpFIBKxDPzzaPMUCVZiLuvyYYijLEUDqfggjwZgIepglIeVX5u6H84ppiEKQ1tnmdtiTU4MA76g3mDbpIEB6cAfM22BVzlj01lDu3iq3rJUQY47a+sjGsbYx+3UFYYrVBAbfFmMyDaB08E1Cz9/mjMyhvbH4bzmKJI8AiRRJczUdhPcjo1kQCxOId49rJFhA1hI+Sdqs/TvIso1wA9UBED81MqzhBZhQaAOCEyA5Ek
OvwBgIQAQAUBzwtp8BzCR4j1gwBCjlLVAF9CAKpQKu/hCSEgegOpHuj/RxkFUf62papjxYBAAseAKkYd11Nh+YcdxLsgljtFfiXdPmOPHejgx10c9Pdr3HLy4KF49Jhm6+1fjsJ548AXk8PrdJUJ8Ii8cIw0W4U7AzE5SdOPkG6Buzf468f4ozNYaZJ+E8CdmVyTmISk1zN24FPAFa4MkxSeJN3wFB2K2p7E4CcZBKnaqAWD1dXD2OFFmICUJ/DV
E7AEEdsR8jsFW3fAMKlQbAEM/wCWjBwsIZIEL2cYehorVYBR0YFMLrk0AN8egAQD3h61z8Z9uoEK1KdxOMgkTgaPgVN1eR7HLIEgPkPTIKOnnxAKUBFWQ5vOMYxANLGwC6gNPUUwQfM2zJIDIkb454AkHfFIDKAGQcMD2EOy4JIvgU2oHgLTBFDkxlAsYQUFMDhe4A4YhkYFES5vwdg0C6L4ex4YceMJB4u0CR/s4dDpBUkhj1UEaPhAmPIHN4VX
vB2ZjRWuXJIc8krb6abtVeuITDMzB4C02JRJIZmOfjXCHAftIrkkLsB4Brh7gvF9l/sAauThcQ1pyACSGeD1XcQwr6V1PMODMwu5SrrYOeAErr5+XOwOoAjH2CWvpXPAc8PEGZhJAndSr/YGK+iuKvpXa4J+1A6VeThyQJwAmv3cgBMvgo1j0kS1F+N69KR/L3EGuEnAKupXGO5V6kbVft2s3CMZmBcAuD8ug3Epsx1m/PDyvzwk4F11m+ftbAEY
3Q9l4cFxDrA1wTr/lyOHiCVu837Lx4szAtdTHTXbr2sL29KACutguII/Ca6zeyQxXtwb19K4LfnhTgPs9lwjEnB1A1wY4Sl2AG454A9poQON/hzZfjuEY57i9/y4RjxAEY9wAt1e9uANWO3Sri91q7Xdnvz3Dbsd/q+vcIwG3Grs90kD/fnuS3k4RtyB6VdrhHXWrod1m7XBAfmYCMAD/q6DdIfn3gb1q5W8Xf5ujX8Hq9+e/uA1v8PCMQ4EG93c
QmAVlzy2PQnJ66pxRb+DSCHGkCRxo7YIUIAuTXjnoF57Oc9G2J2qnKoA6MG0LiTQA/KBjdHyRxjuYBZ6WFZwisCK67S6CVg7axlSEH0BceUov5aN6EAxOxHrQuLkVyiYJQmiogXSb56bLwCfpWPpQEIJ4uUByP9PxIF8CK/oaSfwL3zFjzfk3a7dvmN4mzzp9xN6ebku7oR42wufFtyYYMXT39sZclpfSLUMT3ZqIBWexi500oCWlkeieXD9uTj3
Eay97wLndgQTTkFaAlo4A/zwF3F5Bd7iEQyBhAALFMKMGGXBD9RE8l1TxpaWBgXp9q2TslXtG0J5mHV4a8EhikGEcAAsRNt9xBZr4QsEAA==
```
%%